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ABSTRACT 

The bending stiffness is one of the parameters that determines the mechanical behaviour of a plate and 
therefore influences the acoustic performance of building elements. Besides, it appears in the prediction 
models for calculating the sound reduction index, R, or recently the vibration reduction index, Kij. Its 
accurate determination is thus essential in the field of acoustics. The Atomic Energy Research Institute of 
Korea has proposed an interesting measurement technique to determine this parameter in-situ. This technique, 
which uses the time-frequency analysis, has been successfully applied to thin plates. However, this paper 
shows that corrections should be used for thick walls. Some practical considerations are given and some 
measurements results for masonry walls are presented.  
 
Keywords: Material, Properties, Bending 

1. INTRODUCTION 
The vibratory analysis of a plate excited by a hammer hit shows that quasi-longitudinal waves 

(symmetric zero order mode, S0, of the Lamb waves) and bending waves (Anti-symmetric zero order 
mode, A0, of the Lamb waves) can settle in it. This article focuses on those latter. Indeed, they can be 
used to determine the dynamic properties of the plates. 

The traveling velocity of the bending waves depends on the dynamic properties of the wall but also 
depends on the frequency: the bending waves are said to be dispersive. This means that the high 
frequency bending waves are faster than the low frequency.   

The measurement of the traveling velocity of the bending wave’s energy and the adjustment of the 
results on a theoretical curve lead to the determination of the interdependent dynamic properties of 
plates. 

For thin plates, the traveling velocity of the bending wave’s energy is easily measured with 
accelerometers and the well-known relationships between the dynamic properties can be used without 
special precautions. For thicker plates, the relevant signal is more difficult to obtain, and the simplified 
formulas dedicated to the thin plates are no longer valid. 

2. RELATIONSHIP BETWEEN THE DYNAMIC PROPERTIES 

2.1 For thin plate 

In most books on acoustics, the relationships between the dynamic properties of the plates, which 
are proposed, are based on the theory for thin plates and are given by the well-known following 
formulas: 

𝐶௚,௧௛௜௡ ൎ 2ඥ1.8𝑐௅
ᇱ ℎ𝑓                                  (1) 
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And,   

𝐵 ൌ
௖బ

రఘ௛

ସగమ௙೎
మ                                        (3)                

 With, 
 
𝐶௚,௧௛௜௡, the group velocity of the bending waves according to the thin plate theory; 
h, the thickness of the plate [m]; 
f, the frequency [Hz]; 
𝑐௅

ᇱ , the quasi-longitudinal wavespeed [m/s] 
ρ, the density of the plate [kg/m³]; 
B, the bending stiffness [Nm]; 
fc, the critical frequency [Hz]; 
c0, the wavespeed in air [m/s]  
 

Traditionally, the limit for the applicability of these formula is given by Cremer (1): 
𝜆஻ ൒ 6ℎ                                             (4) 

 
At high frequencies, additional terms need to be added to take account the shear deformations and 

the rotary inertia (2). These corrections result in a bending wavespeed that is lower than that given by 
the equation for pure bending wave and the above equations are no longer valid. 

2.2 For thick plate 

In his article, Rindel (3) presents an equation for the effective phase speed, cph, in a thick plate. 
This equation is a combination of bending and shear waves. The representation of this function as a 
function of frequency shows at high frequency a convergence towards an asymptote given by the shear 
wavespeed, cs, which cannot be accurately determined. Ross (4) proposes another formula. According 
to him, in a uniform and monolithic plate, the phase velocity of the bending wave can be approximated 
by: 

𝑐௣௛,ோ௢௦௦ ൌ 𝑐௅
ᇱ ට

ଵ.଼௛௙

஼ಽ
ᇲାସ.ହ௛௙

                                       (5)  

And the group velocity is given by: 

𝐶௚,ோ௢௦௦ ൌ
ଷ.଺௛௙௖ಽ

ᇲమ

௖೛೓,ೃ೚ೞೞሺ௖ಽ
ᇲ ାଽ௛௙ሻ

                                           (6)                 

The adjustment of this theoretical curve on a measured group velocity curve gives the quasi-
longitudinal wavespeed 𝑐௅

ᇱ . 
 

For masonry walls, the critical frequency is low enough to use the thin plate theory for its 
determination and for the calculation of the bending stiffness, B, according to Eq.2 and Eq.3 
respectively. 

3. THE EXPERIMENTAL PROCEDURE FOR MEASURING THE TRAVELING 

VELOCITY OF THE EFFECTIVE BENDING WAVE’S ENERGY 
 
Different techniques were tested to measure the bending wavespeed or the longitudinal wavespeed 

(4, 5, 6, 8) in thick plates. In this article, it is the traveling velocity of the bending wave’s energy (the 
group velocity) which is determined and which is used for the calculation of the 𝑐௅

ᇱ .  
In their article, Y-C. Choi and Cie (7) present a suitable method to determine the group velocity of 

the bending waves by using a time-frequency analysis. The group velocity equals the distance between 
two accelerometers divided by the time delay between these accelerometers. Being dispersive, the 
group velocity must be given as a function of the frequency. 

 

𝐶௚ሺ𝑓ሻ ൌ
∆௫

∆௧ሺ௙ሻ
                                  (7) 

Where, 
 Δt is the arrival time delay of the bending wave’s energy according to the frequency between two 

accelerometers; 
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Δx is the distance between these two accelerometers. 
The arrival time delay between the accelerometers is obtained by the Wigner-Ville analysis. This 

analysis allows to obtain the energy distribution of a short signal as a function of time and of 
frequencies. The approach of Wigner-Ville is based on the instantaneous autocorrelation function and 
is defined as (9): 

𝑊௦ሺ𝑡, 𝜔ሻ ൌ
ଵ

ଶగ
׬ 𝑠ሺ𝑡 ൅

ఛ

ଶ
ሻ𝑠∗ሺ𝑡 െ

ఛ

ଶ
ሻ𝑒ି௝ఠ௧𝑑𝜏                    (8) 

Thus, with this time-frequency analysis method, the arrival time delay can be obtained at each 
frequency with a very good time resolution.  

The adjustment of the theoretical curve of Cg,Ross [Eq. 6] on the measured group velocity curve [Eq. 
7] provides then the quasi-longitudinal wave velocity 𝑐௅

ᇱ . 

4. EXPERIMENTAL RESULTS 

4.1 Aluminium plate 

A hammer hit is applied on a suspended aluminium plate with the dimensions 1.45 m x 1.35 m x 
0.0025 m (figure 1). The density of the plate is 2153 kg/m³. Two accelerometers are spaced of 0.1 m 
and the impact is given at 0.15 m from the accelerometer 1 on the same line. The signals are recorded 
by a data acquisition system with a sample frequency of 192000Hz. 

 

 

Figure 1 – Picture of the Aluminium plate 

 

Figure 2 – Time signals for the two accelerometers 

 

Figure 2 shows the acceleration signals of the two accelerometers. The Wigner-Ville analysis 
applied to both signals gives their frequency distribution of the energy as a function of time (figure 
3). As expected, and according to the dispersion law of the bending waves, the highest frequencies 
arrive first followed by the medium frequencies and finally by the lowest frequencies. On these graphs, 
the peak magnitudes of the energy distributions are gathered (red curves). The two curves are then 
displayed on the same graph (Figure 4) in order to determine the time delay at each frequency. 

 

  
Figure 3 – Frequency distribution of the energy as a function of time for the two accelerometers 
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The group velocity can be then calculated by applying [Eq.7]. The determination of the first 
dynamic property, the quasi-longitudinal wavespeed , 𝑐௅

ᇱ ,  is reached by the adjustment of the 
theoretical curve Cg,Ross [Eq. 6]. The results are shown figure 5. The Cg,thin [Eq.1] of the thin plate 
theories is also presented in this figure.  

For the aluminium plate, the thin plate theory gives nearly the same results than the thick plate 
theory and the relationships Eq 1 to Eq 3 can be used for the determination of the dynamic properties. 

The calculated quasi-longitudinal wavespeed, 𝑐௅
ᇱ , is 3632 m/s; the critical frequency, fc, is 7019 Hz 

and the bending stiffness, B, is 37 Nm,. 
This procedure was also successfully applied for the determination of the properties of the 

plasterboards.  

 
Figure 4 – Frequency distribution of the peak 

energy as a function of time for the two 

accelerometers 

 
Figure 5 – The measured group velocity compared to 

the theoretical expressions 

 

4.2 Gypsum block walls 

The wall is composed of gypsum blocks (figure 6). Its dimensions are 2.4m x 4m and the thickness 
is 0.07 m. The block density is 1066 kg/m³. 

This partition wall is in fact a composition of a double wall for which the airborne sound insulation 
was measured (figure 7). The result of this test is important because it shows us that the critical 
frequency falls in the third octave band of 500 Hz. This data will allow us to validate our results.  

For this case, a horizontal line of 8 accelerometers spaced of 0.05 m is used. The impact is given 
at 0.10 m from the accelerometer 1 on the same line. The averaged time delay obtained between all 
of these accelerometers gives a best accuracy on the results. 

The signals are recorded by a data acquisition system with a sample frequency of 204800Hz.  
 

 

Figure 6 – Picture of the gypsum block 

wall and the horizontal line of 

accelerometers 

 
Figure 7 – The sound reduction index of 

the double gypsum wall  
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The exploitable signals are in the first milliseconds because the standing waves set in very quickly. 
A time window is then used to isolate the relevant signals. A low-pass and a high-pass filters are also 
applied. The frequency range of interest is that which gives the wavelengths between 3h and L/3 
(where h is the thickness and L, the width of the walls). In this case: 

0.21 m<λinterest<0.8m 
Or, 

400 Hz < finterest<5000 Hz 
A hammer with a hard head is used to give sufficient energy in this frequency range. Figure 8 gives 

the Wigner-Ville analysis for the first four accelerometers. The distribution curve appears quite clearly 
on the graphs. 

  

  

Figure 8 – Frequency distribution of the energy as a function of time for the first four accelerometers 

aligned horizontally  

Figure 9 – Frequency distribution of the peak 

energy as a function of time for the first four 

accelerometers aligned horizontally 

Figure 10 – The measured group velocity compared 

to the theoretical expressions for the horizontal 

direction 

 
The peaks of the bending wave energy of each graphs are gathered and they are presented on the 

same graph (figure 9). At each frequency, the goup velocity is evaluated between different 
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accelerometers. The light grey curves show these results on figure 10. The red curve represents the 
average of these curves. The adjustment of the theoretical curve according the thin plate theory gives 
inconsistent results because this plate can no longer be considered as a thin plate. 

The adjustment of the Cg,Ross gives: 𝑐௅
ᇱ   ≈ 1699 m/s. The calculated fc, according to Eq. 2, is then 

536 Hz and the bending stiffness is B=87958 N.m; 
This critical frequency falls in the third octave band of 500 Hz observed on the spectrum of sound 

reduction index, R (figure 7). 
The figures below present the results for the vertical direction. The adjustment of the Cg,Ross (figure 

13) gives: 𝑐௅
ᇱ   ≈ 1867 m/s. The calculated fc is then 488 Hz and the bending stiffness is B=106156 

N.m; 
This critical frequency falls yet in the third octave band of 500 Hz observed on the spectrum of 

sound reduction index, R. 
 

  

  

Figure 11 – Frequency distribution of the energy as a function of time for the first four accelerometers 

aligned vertically 

Figure 12 – Frequency distribution of the peak 

energy as a function of time for the first four 

accelerometers aligned vertically 

Figure 13 – The measured group velocity compared 

to the theoretical expressions for the vertical 

direction 
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4.3 Brick wall 

This procedure was also tested for a wall composed of perforated bricks (h is 0.14 m and ρ is 900 
kg/m³) an with the same dimensions than the gypsum block wall. The results are summarised at figures 
15 and 16 only for the diagonal direction. The measurements were carried out on the plastered wall 
(Figure 14). 

    
Figure 14 – Picture of the brick wall and the diagonal line of accelerometres 

  

  

Figure 15 – Frequency distribution of the energy as a function of time for the first four accelerometers 

aligned diagonally 

 
Figure 16 – Frequency distribution of the peak energy as a function of time for six accelerometers 
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The adjustment of the Cg,Ross (figure 16) on the results gives: 𝑐௅

ᇱ   ≈ 900 m/s. The calculated fc, is 
then 506 Hz and the bending stiffness is B=166736 N.m. This estimated fc is consistent with the result 
obtained on the spectrum of the sound reduction index. 

 
The procedure described here for the determination of the dynamic properties is applicable as long 

as the size of the inhomogeneities (the size of the holes in the blocks) is small compared to generated 
wavelengths.   

5. CONCLUSIONS 
The adjustment of a theoretical curve of the group velocity, Cg, on measurement results allows to 

obtain the dynamic properties of masonry walls. The theoretical expression of Cg coming from the 
thin plate theories gives aberrant results because the masonry walls are relatively thick compared to 
the wavelength of the structural waves and they exhibit more complicated dispersions than thin plate. 
It is the Ross’s approximation which is more relevant for thick plate, that should be used to estimate 
theoretically Cg and cph.   

Experimentally, the group velocity is reached by the measurement of the arrival time delay of the 
bending wave’s energy according to the frequency between two accelerometers whose the distance 
that separate them is known. This is the Wigner-Ville analysis, which is used to obtain, with relatively 
good accuracy, these arrival time delays. Practically, the exploitable signals for masonry walls, are in 
the first milliseconds because the standing waves set in very quickly. A time window is then used to 
isolate the relevant signals. A low-pass and a high pass filters are also applied.  

This procedure is applicable as long as the size of the inhomogeneities in the masonry blocks is 
small compared to generated wavelengths.   
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