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ABSTRACT 

The prediction of the reduction of impact sound pressure level ΔL according to annex C of the stand-

ard ISO 12354-2 gives an acceptable estimation of the floating floor’s performance for thin resilient 

layers.  However, the performance is often largely overestimated for thick resilient layers or for re-

silient layers combined with thermal layers. One reason for this is that the simplified model doesn’t 

account for the thickness resonances in the underlays which can greatly affect ΔL. This is confirmed 

by comparing finite element and transfer matrix method simulations with experimental results. This 

paper establishes the mechanisms leading to the development of these resonance waves and provides 

some guidelines to estimate their negative effects on the ΔL.  

 

1.    INTRODUCTION 

In recent times, the thickness of thermal insulation layers under floating screeds has increased to meet 

more stringent energy performance requirements. Due to this increase in thickness,  the resonance 

frequency of the first thickness-mode of this layer shifts down into the medium frequency range be-

tween 1000 and 5000 Hz depending on the thickness and type of the material. Thickness-modes are 

wave effects which occur when the thickness of the layer becomes comparable with multiples of the 

half-wavelength of the elastic waves traveling in the layers. These modes generate resonances that 

increase the vibratory transmission at specific frequencies. 

A large number of laboratory tests have shown the negative impact of this thickness-mode on the 

improvement of impact sound insulation ΔL, as illustrated in Figure 1. It shows the ΔL measurement 

for a floating screed system composed of an acoustic and a thermal layer. This measurement re-

sult is compared to the classical constitutive model [1] based on force transmissibility theory, in 

which the floating floor system is considered as a linear damped single-degree of freedom sys-
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tem. While the simplified model generally gives good results for floating screed systems, it can-

not accurately evaluate the actual acoustical behaviour of the floating floor with thermal 

layer above 315 Hz.  

 

 
Figure 1: ΔL measured for a floating screed system on a supporting slab (140 mm, 2400 kg/m³) 

compared to the classical force transmissibility curve. The floating screed system consists of a ce-

mentitious screed (60 mm, 1900 kg/m³), an acoustic underlay (a felt, 7 mm, 49 kg/m³) and a thermal 

layer ( 65mm, 480 kg/m³).  

 

Two floating screed systems, whose ΔL has been measured in the laboratory (EN ISO 10140-3:2021), 

are discussed below. These systems were used as a basis for the analysis of the problem and the 

comparison of predictive models. 

 

The first case (CASE 1) studied is composed of a finishing screed (cement, 60 mm, 1900 kg/m³), a 

thermal layer (cement-based mortar with fine EPS beads, 65 mm, 125 kg/m³) and a slab (concrete, 

140 mm, 2400 kg/m³). In the second case (CASE 2), an acoustic layer was added between the screed 

and the thermal layer (PE foam, 8mm, 25 kg/m³). 

 

2.    MEASUREMENT OF THE MECHANICAL PROPERTIES OF THE LAYERS 

The knowledge of the mechanical properties of the different layers forming the two cases studied is 

important to understand the observed phenomena and as input data for the predictive models. The 

main mechanical properties (E, η) were measured with different experimental methods depending on 

the material and the frequencies of interest [2]. 

2.1.    Properties of the acoustic resilient layer 
 

The standard ISO 9052-1:1989 was used to determine the dynamic stiffness, s’, of the acoustic resil-

ient interlayer at low frequency. This measurement principle is based on the measurement of the 

mass-spring resonance frequency, fr, of a system composed of the sample loaded with a steel plate.  

𝑓𝑟 =
1

2𝜋
ට

𝑠′

𝑚′′
  [Hz]                                                               (1) 

Where s’ is the dynamic stiffness of the sample [N/m³] 

            m” is the surface mass of the steel plate [kg/m²] 
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The Young’s modulus, E, was then deduced with: 

 

𝐸 = 𝑠′𝑑 [N/m²]                                                                 (2) 

 

Where d is the thickness of the sample [m]. 

 

The measurement of the bandwidth at half-power, Δf, of the resonant peak of this “mass-spring” 

system was also used to determine the damping, η, of the acoustic layer. 

 

𝜂 =
∆𝑓

𝑓𝑟
     [-]                                                                        (3) 

 

At high frequency, the Young’s modulus of the acoustic resilient interlayer was deduced from the 

measurement of the first thickness resonance frequency of the sample, fr,1 [1]. According to this 

method, the sample is placed between steel plates (Figure 2). A piezo-electrical transducer placed on 

top of the sample sends a white noise signal and the second transducer placed underneath the sample 

measures the frequency response function revealing the first thickness resonance: 

 

𝑓𝑟,1 =
𝑐𝐿

2𝑑
    [Hz]                                                                        (4) 

 

Where cL is the velocity of the compressional wave [m/s]. 

And,                                             𝑐𝐿 = ට
𝐸

𝜌
                                                                                         (5) 

 

 
Figure 2: Setup for the measurement of the first thickness resonance frequency of an acoustic layer 

 

2.2.    Properties of the solid layers (screed, thermal layers and slab)  
 

At low frequencies, an equivalent complex Young’s modulus, E, of the thermal layer was determined 

by fitting the measured first bending mode dispersion curve with a finite element model. The meas-

urements were carried out on a sample with a size of 400 mm x 400 mm that is excited at its center 

with a shaker.  

At high frequencies, the Young’s modulus, E, of  the three solid layers was determined by the meas-

urement of the quasi-longitudinal phase velocity. For this measurement, two accelerometers, sepa-

rated by a distance d, were used to detect the arrival time of the quasi-longitudinal wave generated 

by a hammer hit. The quasi-longitudinal wave velocity and Young’s modulus are then calculated 

from [3]: 

𝑐𝐿 =
𝑑

𝛥𝑡
                                                                             (6) 

 

𝐸 = 𝑐𝐿
2 ∗ 𝜌(1 − 𝜈2)                                                                    (7) 

 

Where 𝜌 is the density [kg/m³] and 𝜈 the Poisson coefficient [-] of the thermal layer, assumed to be 

0.2. 

The total loss factors of the screed and the concrete slab were determined by the measurement of the 

structural reverberation times, Ts. The impact hammer was used as method of excitation. The relation 

between the total loss factor η and the structural reverberation time Ts is given by: 



 

𝜂 =
2.2

𝑓𝑇𝑠
                                                                          (8) 

 

The damping of the thermal layer could not be measured because it was not accessible. 
 

2.3.    Measurement results 
 

Table 1 : Measurement results of the mechanical properties of the different layers 

 Concrete 

slab 

Thermal 

layer 
Acoustic layer 

(PE foam) 
Finishing 

screed 

Thickness [mm] 140 65 8 60 

Density [kg/m³] 2400 125 25 1900 

E [Pa] at low frequencies - 4.05e+7 1.5e+05 - 

η [-] at low frequencies 0.06 - 0.3 0.04 

E [Pa] at high frequencies 2.2e+10 2.83e+7 8.50E+04 1.74e+10 

η [-] at high frequencies 0.01 - - 0.02 
 
 

3.    ANALYTICAL MODELS 

 

Theoretical studies of thickness resonances in isolation mounts have been made by several authors 

[4, 5]. They have developed analytical models of transmissibility that take into account these standing 

waves. Because similar phenomena are involved, the measurement results of ΔL are compared with 

the analytical model of Harrison.  
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And,                                                        ∆𝐿𝐻𝑎𝑟𝑟𝑖𝑠𝑜𝑛 = 20lg⁡(ቚ
1

𝑇
ቚ)      [dB]                                                   (10) 

 

Where  n is the damping ratio of the thermal layer (n ≈ η/2) 

M is the surface mass of the screed [kg/m²] 

m is the surface mass of the thermal layer [kg/m²] 

 

And,                                                                           𝜔0 = ቀ
𝑠′

𝑀
ቁ
1/2

                                                           (11) 

 

The standing wave resonant frequencies are given by: 

 

𝜔𝑖 = 𝜔0𝑖𝜋 ቀ
𝑀

𝑚
ቁ
1/2

           i=1,2,3,…                                               (12) 

 

The measurement results of ΔL are also compared with the classical theory [1].  
 
 



∆𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 = −20𝑙𝑔 ൦ඩ
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3.1.    CASE 1: Thermal layer without acoustic interlayer 

 

For case 1, the best fit of Harrison’s model is obtained with half the measured Young’s modulus at 

low frequency (Table 2). The resonance dip of the mass-spring system around 250 Hz is overesti-

mated by both analytical models (Figure 3). 

The resonance frequency f1 of the 1st thickness-mode is relatively well estimated by Harrison’s 

model. At these high frequencies, the measured Young's modulus is 1.4 times greater than the mod-

ulus used for the fit. While Harrison’s model predicts a sharp dip around f1, the resonance dip in the 

measurement is much broader, which can be explained by various reasons. 

  

- The thickness of the thermal layer varies with ± 1.5 cm over the entire test surface; 

- The Young’s modulus depends on the frequency. When the wavelength becomes an appre-

ciable fraction of the thickness of the layer, the compressional wave velocity is lower than 

the value given by cL=(E/ρ)1/2. This decrease in the velocity is caused by the radial motion 

[4]. This difference is also observed in the Young's modulus measurement results. 

- The damping could be underestimated. 

Table 2 : Mechanical properties used to model CASE 1 

 Thermal layer Finishing screed 

Thickness [mm] 65 60 

Density [kg/m³] 125 1900 

E [Pa]  1.97e+7 - 

η [-]  0.3 - 

 

 
Figure 3: Case 1 (thermal layer without acoustic interlayer): measurement versus analytical models  
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3.2.    CASE 2: Thermal layer with acoustic interlayer 

 

The theoretical model of Harrison does not currently allow calculations for a thermal layer combined 

with an acoustic layer. In order to apply the theoretical model, it is necessary to define an equivalent 

layer that takes into account the mechanical properties of both layers. Therefore, the mass-spring 

resonance frequency 𝜔0 of Equation 11 must take into account the dynamic stiffnesses of the two 

layers: 

𝜔0 = ට
𝑠𝑒𝑞
′

𝑀
  [Hz]                                                          (14) 

 

Where                                                           𝑠𝑒𝑞
′ =

𝑠𝑇ℎ⁡
′ 𝑠𝐴𝑐

′

൫𝑠𝑇ℎ⁡
′ +𝑠𝐴𝑐

′ ൯
                                                            (15) 

 

And s’Th is the dynamic stiffness of the thermal layer [N/m³]; 

        s’Ac is the dynamic stiffness of the acoustic interlayer [N/m³]; 

 

For case 2, the best fit of Harrison’s model to the measured results is obtained with the mechanical 

properties for the equivalent layer given in Table 3, these values are obtained with Equation 14 using 

a Young’s modulus of 4.05e+7 Pa for the thermal layer and a Young’s modulus of 1.8+05 Pa for the 

acoustic layer: 

 

Table 3 : Mechanical properties used to model CASE 2 with an equivalent layer 

 Equivalent 

layer 
Finishing screed 

Thickness [mm] 73 60 

Density [kg/m³] 114 1900 

E [Pa]  2.09e+6 - 

η [-]  0.3 - 

 

 
Figure 4: Case 2 (thermal layer with acoustic interlayer): measurement versus analytical models 
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The thickness resonance frequencies are slightly overestimated by the adjusted model of Harrison 

compared to the measurement results (Figure 4). A better fit would be obtained with a lower Young's 

modulus at high frequencies.  

It could of course be expected that the theoretical model cannot be applied to systems composed of 

two different underlayers since at high frequencies, standing waves occur in each layer independently. 

These standing waves should be independent of the resonant frequency of the combined mass-spring 

system. Indeed, Harrison shows that the velocity V1, which determines the resonant frequency of the 

first standing wave, is the average velocity through both layers. 

 

𝑉1 =
2

𝜌1/2

(𝐸𝑇ℎ𝐸𝐴𝑐)
1/2

𝐸𝑇ℎ
1/2

+𝐸𝐴𝑐
1/2                                                            (16) 

 

This means that the Young's modulus determined from Equations 14, 15 and 2 gives an overestima-

tion at high frequencies. 

Unfortunately, in Harrison’s model, the transmissibility and the standing wave frequencies are calcu-

lated based on a constant Young’s modulus. Furthermore, the thickness-resonance frequencies  are 

calculated from the mass-spring resonance frequency according to Equation 12  which does not cur-

rently allow calculations with a Young’s modulus depending on the frequency. 

 

4.    FEM AND TMM MODELS 

To overcome the limitations of the analytical models,  finite element (FEM) and transfer matrix 

(TMM) models are used that allow to estimate the ΔL taking into account mechanical properties that 

depend on the frequency. 

 

For the FEM calculations, the commercial software Actran (Version 15.1) was used. The isotropic 

solid elements with KRYLOV with MUMPS solver were chosen. The models represent the measured 

complexes in real size (4.1 m x  2.6 m). The mesh size was chosen in order to be six times finer than 

the first thickness-mode wavelength. For the boundary condition, a simple support was modelled by 

restraining the transverse translational degree of freedom of the boundary of the lower surface. The 

frequency range covered one-third octave bands between 50 Hz and 5000 Hz using a logarithmic 

increment. Results were calculated and averaged at five or six frequencies in each one-third octave 

band. Excitation of the source plate was applied using three non-correlated point forces. The spatial-

average velocity level was calculated on the concrete slab using the radiating surface which can give 

the normal mean square velocity of this surface. The ΔL is obtained by taking the difference between 

the normal mean square velocity of the bare slab and the normal mean square velocity of the slab 

bearing the floating screed. 

 

For the TMM calculations, the MATLAB application WinLayers [2] was used. One of the main as-

sumptions in the TMM is plane wave propagation through the multi-layered structure. To model the 

impact sound insulation of a point force excited structure in the TMM, the sound field is decomposed 

into plane wave components. The ΔL is calculated from the resulting sound pressure levels beneath 

the point-excited floors with and without floating screed. Results were calculated for infinite struc-

tures at 9 frequencies per one-third octave band and averaged. Diffraction effects caused by the finite 

dimensions of the floors can be taken into account by a spatial windowing technique. Because the 

diffraction only depends on the size of the structure, the ΔL-prediction is however independent of the 

floor size. 

 

For the FEM and TMM models, a linear decay with frequency was applied to the Young’s modulus 

of the thermal layer. A Poisson’s ratio of 0.2 was chosen for the three solid materials. 

 

Table 5 : Mechanical properties used in FEM and TMM 



 Concrete 

slab 
Thermal 

layer 
Acoustic layer  Finishing 

screed 

Thickness [mm] 140 65 8 60 

Density [kg/m³] 2445 125 25 1900 

E [Pa] at 50 Hz 2.2e+10 1.97e+7 2.4e+5 1.74e+10 

η [-]at 50 Hz 0.06 0.8 0.2 0.04 

E [Pa] at 5000Hz 2.2e+10 1.64e+7 2.4e+5 1.74e+10 

η [-]at 5000Hz 0.01 0.1 0.1 0.02 

 

4.1.    CASE 1: Thermal layer without acoustic interlayer 
 

At low frequencies, where the same Young's modulus was used as for Harrison's analytical model, 

the FEM and TMM models slightly overestimate the resonance frequency of the mass-spring system 

compared to the one observed in the measurement results (315 Hz instead of 250 Hz) (Figure 5). This 

discrepancy could be partly explained by a poor estimation of the Poisson’s ratio, which plays a non-

negligible role in the determination of this resonance. 

In the models, the first standing wave resonance dip is clearly visible at around 3150 Hz. Both FEM 

and TMM overestimate ΔL around 1850 Hz at which an anti-resonance is predicted, but this peak is 

not visible in the measurement results. As explained in section 4.1, the resonance  dip  in the meas-

urement result is spread out due to the variability of the thermal layer thickness and probably a more 

pronounced Young's modulus decay when the wavelength becomes an appreciable fraction of the 

thickness of the layer. This may also explain why the anti-resonance peak is not visible in the meas-

urements.  
 

 
 

Figure 5: Case 1 (thermal layer without acoustical interlayer): measurement versus FEM and TMM 

 

4.2.    CASE 2: Thermal layer with acoustic interlayer 
 

For case 2, the FEM and TMM predictions don’t match the measurements when the thermal and 

acoustic layer are modelled as two separate, perfectly bonded elastic layers with the properties of 
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Table 5 (figure 6, ACTRAN and TMM). The use of an equivalent layer having mechanical properties 

equivalent to the two combined layers gives a better agreement (figure 6, ACTRAN (equivalent layer) 

and TMM (equivalent layer)). It seems that the bond between the different layers plays an important 

role. Near the contact surface, where the thermal layer is bonded to the relatively stiff concrete screed 

(or the relatively soft acoustic layer), the effective modulus of the material increases (or decreases), 

resulting in an increase (or decrease) in effective modulus. This phenomenon which is called the “end 

effect” does not seem to be well managed by the FEM or TMM calculations. In his article, Harrison 

has shown the influence of this “end effect”. The variability of the ratio ω1/ ω0 between different 

combinations of layers could be a consequence of this “end effect” having a different influence upon 

the low resonant frequency and the standing wave frequencies. 
 
 

 
Figure 6: Case 2 (thermal layer with acoustical interlayer): measurement versus FEM and TMM 

 

 

5.    DISCUSSION OF RESULTS 

The manifestation of standing waves will occur at lower frequencies the higher the density and thick-

ness of the thermal layer and the lower the Young’s modulus of this layer. As we have seen before, 

the bonding of a thermal layer with an acoustic layer will also have the effect of lowering the fre-

quency of the first standing wave by the “end effect”. 

 

The damping of the thermal layer has a significant influence (Figure 7). The measurement results are 

obtained for combinations consisting of the same acoustic interlayer but with a thermal layer that 

differs only by its damping. 

A low damping of the thermal layer accentuates the resonance dips caused by the standing waves and 

results in a lower ΔL than predicted by the classical model (Figure 7a). Conversely, high damping 

reduces the effect of resonance. At high frequencies, the dissipative effect in the medium in which 

the elastic waves propagate even causes an exponential increase in ΔL which is not taken into account 

by the classical model (Figure 7b). 
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(a) 

 
(b) 

 

Figures 7:  Comparison of measured ΔL  with the analytical models for two different thermal layer 

compositions - a) for a thermal layer with low damping - b) for a thermal layer with high damping. 

 

Figures 8 illustrates the effect of the thickness of a thermal layer on ΔL. Figure 8a presents the meas-

ured ΔL for two complexes: a complex consisting of a 15 mm thermal layer and a complex consisting 

of the same thermal layer but with a thickness of 60 mm. As expected, the resonance frequency of 

the mass-spring system of the thicker thermal layer system is lower: it is at 200 Hz while that of the 

thinner complex is at 250 Hz. From this resonance frequency, and according to the classical model, 

the ΔL of the thicker complex should have higher values, but the appearance of the standing waves 

(f1,60 mm at 630 Hz and f2,60 mm at 1250 Hz) causes a drop in the ΔL, which then joins the curve 

of the thinner complex. At high frequencies, the thick layer regains the advantage thanks to its higher 

damping. 

Figures 8b presents the Harrison’s models for these cases. The predictions confirm the observations 

from the measurement results. The frequencies of the standing waves are well identified but the dips 

are more pronounced compared to measurement results due to an underestimation of the damping. 
 

 
(a) 

 
(b) 

 
 

Figures 8:  Analysis of the effect of thermal layer thickness on ΔL -a) from measured results – b) 

from the Harrison’s prediction. 
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6.    CONCLUSIONS 

In recent times, the thickness of thermal insulation layers under floating screeds has increased to meet 

more stringent energy performance requirements. This increase in thickness has caused the appear-

ance of thickness resonances into the medium frequency making the classical constitutive model 

based on force transmissibility theory inaccurate to evaluate the actual acoustical behaviour of a float-

ing floor in the medium and high frequency ranges.  

 

The Harrison’s analytical model was used to study the influence of these standing waves on ΔL. This 

model has been shown to be quite effective in locating the thickness resonance frequencies for a 

single layer complex. This model showed the positive impact of a high damping of the thermal layer 

due to the dissipation of elastic waves in the medium. It also showed that a thicker thermal layer 

offered no (or little) improvement in the mid-frequency range on ΔL compared to a thin layer. How-

ever, this analytical calculation should be taken with caution as it does not allow for the modelling of 

a frequency-dependent Young's modulus. Indeed, it has been shown that when the wavelength be-

comes an appreciable fraction of the thickness of the layer, radial motion leads to a decrease in wave 

velocity.   

 

When a complex is composed of two layers (thermal layer combined with an acoustic layer), Harri-

son's model requires the definition of an equivalent layer. In this case, the  thickness resonance fre-

quencies are overestimated compared to those measured. This is due to the fact that the model does 

not take into account the radial motion but also the “end effect”, the increase of the damping with 

increasing frequency and the decrease of the compression wave velocity for the waves which travel 

through the two different materials.  

 

The FEM and TMM models were then applied in order to take into account a Young's modulus de-

creasing with increasing frequency. These models offer satisfactory results for single layer com-

plexes. The results of the calculations for “double layer” complexes are not satisfactory and do not 

allow to highlight the decrease of the compression wave velocity. This would argue in favour of an 

"end effect" since it is not well managed by these models.  
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